In fact the simulation for the 100W run predicted only ~50uN for our pure RF system with dielectric, while the 10kW run predicted a thrust level of ~6.0 Newton without a dielectric in the cavity. And at 100kW-rf it was now up to ~1300 Newton, but the input power to thrust production nonlinearity was starting to taper off around 50kW. Of course these Q-V plasma thrust predictions are based on the Q-V not being immutable and non-degradable, a feature we admit is not widely accepted by the mainstream physics community, at least at the moment.
Due to the above non-linear thrust scaling with input power predictions, we have started the build up of a 100W-to-1,200W waveguide magnetron RF power system that will drive one of our aluminum RF frustum cavities. Initially the test rig will follow Shawyer's first generation test rig that used a tetter-totter balance system in air only to see if we can generate similar thrust levels that Shawyer reported using a hermetic sealed box, which were in the ~16 to 300 milli-Newton range dependent on the Q-Factor of the frustum.